
20 July 2009 PDMA Visions Magazine

As the debate continues about how to make the product management process more efficient, a number of new techniques have evolved.
Within the “flexible” school of product development and management is “agile” product development—which came out of the software
development field. In this article, the authors describe this technique and its virtues in new product development (NPD).

Flexible product development
for a turbulent world—
Is “Agile” NPD the answer?

NPD Trends and Practices

Preston G. Smith, Principal, New Product Dynamics
(preston@NewProductDynamics.com) and Katherine Radeka, President,
Whittier Consulting Group Inc. (katherine.radeka@whittierconsulting.com)Katherine RadekaPreston G. Smith

In today’s uncertain environment, when economic recovery is
either years away or just around the corner, product developers
need specific tools to help them maintain flexibility for as long

as possible, so that they can make key product decisions closer
to product launch.

Software development has faced this challenge for most of its
history. Even today, new technology arrives in a continuing torrent,

providing both unex-
pected benefits and chal-
lenges. Customers have
become more informed
and more vocal in ex-
pressing their desires.
Global business creates
new opportunities and
new competitors. Any
of these situations can
provoke a change in

the middle of any development project. But some of the lessons
software developers have learned in dealing with this chaos apply
directly to other types of products—products that are as far away
from software as playground equipment and airplanes.

At first, software developers responded by tightening up the
development process, using a rigorous “waterfall” lifecycle where
work cascaded from one step to the next, that looks a lot like the
phased development processes that Bob Cooper, of Stage-Gate
™ fame and others have advocated.

The reasoning behind the development of “agile”
Today, many software developers recognize that adding rigid-

ity into a process that is buffeted by change only leads to prod-
ucts that don’t satisfy customers. In 2001, 17 software leaders
expressed their frustration with the waterfall lifecycle’s lack of
responsiveness and proposed a liberating alternative: “agile”
software development.

The Agile Manifesto (agilemanifesto.org)1 comprises four
comparisons, three of which apply equally to other types of
development:

Individuals and interactions •	 over processes and tools
Working software •	 over comprehensive documentation
Responding to change •	 over following a plan

The authors clearly stated that while the items on the right
were important, the ones on the left mattered more. This is a

revolutionary statement, because most of us revere processes,
tools, complete documentation, and following the plan. But these
are the very items that break down when conditions are highly
volatile. The agile software community acknowledges the realities
of operating in an environment where change comes unexpectedly
and flexibility must be preserved as long as possible.

Consequently, in order to maintain flexibility—of software or
anything else—one must think and operate quite differently from
today’s norm. This article describes three such areas that develop-
ers must handle in new ways and closes by suggesting how you
can implement this approach today.

The pros and cons of delaying decisions
Most managers are paid to make decisions—the sooner the

better usually. Indecision is often seen as a sign of weakness, and
if we knew everything we needed to know up front, that might
be right. But during turbulence, early and rigid decisions are a
straightjacket.

The problem with early decisions in a changing environment is
that once a decision is made, changing it often has an associated
cost, what we call the cost of change. The agile developer instead
keeps options open as long as possible, until the “last responsible
moment”—that last point in time when the team can make the
decision without significantly impacting the rest of the project.

Software development expert Mary Poppendieck illustrates this
“last responsible moment” with a story: “They teach airline pilots
in Switzerland to make the decision about whether or not to pro-
ceed with a landing attempt at 1,000 meters (approximately 3,000
feet) above landing altitude—no earlier, and no later. Why? The
weather is unstable in the Alps, and pilots need to make landing
decisions as late as possible to take advantage of the best available
information. Why not later? The clouds have rocks in them.” 2

The idea is first to establish the last responsible moment,
schedule it, and then start collecting information to help make a
better decision when its last responsible moment arrives. Teams
can gain a tremendous amount of flexibility by thinking through
the key decisions where information is likely to change and then
creatively scheduling their work to delay those decisions.

Note that delaying decisions in this way is not procrastination.
Procrastination is being lazy about decision-making (a sign of a
poor manager). In contrast, scheduling a decision and collecting
information before you must make it is an anticipative, active
process.

“ Many software developers
recognize that adding rigidity
into a process…only leads
to products that don’t satisfy
customers.”

Preston
Text Box
Vol 33, No 2

21July 2009PDMA Visions Magazine

Managing the project
There are too many product development organizations that run

their projects like construction projects, where change is limited
by the need to create detailed architectural drawings to coordinate
work across multiple subcontractors. Even in that world, classic
project management requires a lot of effort to keep the plans cur-
rent in the face of weather delays, customer change orders and
subcontractor communication issues.

In the best of times, product development programs must ac-
commodate much more change. Normal project planning practice
is to plan the program based on detailed specifications, then follow
the plan. In fact, project managers are often rewarded for following
the plan. But when change is rampant, building a detailed plan at
the outset is wasteful, because it will just have to be changed.

One way around this—described in both PDMA’s PDMA
ToolBook 33 and an article by Greg Githens in Visions4—is rolling-
wave planning, which is a method of planning one segment at a
time in detail, leaving later segments to be detailed later as the team
encounters them. For example, a team may only create detailed
plans four weeks out, with the entire program guided by high-level
plans, which are easy to change because they contain only the level
of detail necessary to coordinate between groups.

The other approach, which is a mainstay in agile software
development and was used to develop the Boeing 777 airliner,
is “loose-tight” planning, in which the team alternates between
periods of tight planning and open periods where the plan can be
changed easily. The Boeing 777 team alternated between periods
of design, where change and creativity reigned, and periods of
stabilization, where sub-teams coordinated their work.5

Agile software devel-
opers apply loose-tight
planning by organizing
their work into a series
of short development
cycles. Only the current
cycle has a detailed plan,
and it does not change
during the cycle. An

open planning period happens at the end of each cycle to create
the detailed plan for the next cycle.

Defining the product
One thing you can expect to change is the product requirements

or specifications. Normal “best practice” is to conduct Voice-of-
the-Customer (VOC) research, distill this into a list of require-
ments, freeze them, and develop the product to these requirements.
But this often degrades into finger-pointing between engineering
and marketing about the quality of the requirements, when the
true cause is simply changing conditions.

This ideal state never happens: In a survey conducted with more
than 1,000 development managers, there was always a change in
requirements during design. Moreover, only five percent of designers
even had complete requirements when they started designing, and for
each developer who waited for at least 80 percent of the requirements,
five others, under time pressure, had already started designing.6

Agile developers balance the need for stability in requirements
against the reality of changing requirements and the need to give
developers rich information about customer perceptions.

One way to overcome the dilemma of changing requirements
is to define the customer or user, rather than the product, by using

personas crafted carefully from your market research. Or write
use cases or user stories, which describe how the user uses the
product, again carefully built from solid customer research. Fi-
nally, get feedback from customers around important details that
affect them and might therefore change: user interfaces, industrial
designs and new features. There are excellent books in the software
development literature describing these techniques.7

What do I do next?
Chances are, your organization has new projects about to start,

projects under way and projects that have already experienced the
conflict of rigidity under constant change.

If you have projects about to start, you can maximize your flex-
ibility from the beginning stages of the project. As you plan your
concept and feasibility phases, identify the key design decisions
and think of ways to delay those decisions as long as possible.
Begin short development cycles now to gain experience with them
so that when you need them, the team is ready. Find ways to get
better customer information now, before the design has frozen.
Finally, consider ditching the specifications document in favor
of customer personas, use cases and stories that use narrative to
convey richer information about the customer.

If you have projects in the middle of development with high risk
of late changes, take steps now to mitigate the effects. Catalog
the major design decisions that have already been made – and that
are planned to close soon – and identify the ones with high risk of
change later in the project. Decide whether or not you have truly
reached the “last responsible moment” for major decisions, or if
some creative scheduling could provide more time and clarity.
Then delay those decisions you can, and add the rest to the list
of risks to monitor over the course of the program; assign last
responsible moments to all of them. As work proceeds, switch to
short planning cycles – one to two months works best for many
teams – to incorporate more flexibility into your plans.

If you have projects that are already suffering from high degrees
of late changes and late discoveries, immediately switch to short
planning cycles—two weeks or less if things are truly critical—
to eliminate the overhead of maintaining unrealistic schedule
detail and to help make the team’s issues visible immediately.
Then identify the major areas of risk that have yet to be resolved
and create a proactive management plan. Some major risks now
probably didn’t show up on the list created in initial planning.
Finally, catalog the major decisions that still have high degrees
of risk, and seek ways to delay those decisions.

By using these techniques to add flexibility to your product devel-
opment programs, you can create the conditions that enable success-
ful product development even in the most uncertain of times.

Endnotes
1. See http://www.agilemanifesto.org
2. Private interview between Katherine Radeka and Mary
Poppendieck, April 7, 2009, conducted for this article
3. Gregory D. Githens, “Using a Rolling Wave for Fast and Flexible
Development” in PDMA ToolBook 3, New York: John Wiley & Sons,
2007: 397-415
4. Gregory D. Githens, “How to Use the Work Breakdown Structure
to Define and Manage the Project’s Work Scope,” Visions, XXII no. 3.
(July 1998): 20-23
5. Preston G. Smith, Flexible Product Development, San Francisco:
Jossey-Bass, 2007: 188–189
6. Ibid, 32
7. See http://flexibledevelopment.com/resources.htm#Customers

“ Agile software developers
apply loose-tight planning by
organizing their work into a series
of short development cycles.”

