
CHANGE: EMBRACE IT, 
DON’T DENY IT 

Tools and techniques inspired by software development can introduce the flexibility 
needed to make changes during product development with minimal disruption. 

 

Preston G. Smith 
 
 
This article was published in Research-Technology Management, July–August 2008 (Volume 51 No. 4), pages 34–40. For 
the published version, see http://iri.publisher.ingentaconnect.com/content/iri/rtm/2008/00000051/00000004/art00005 and 
for a complimentary audio version, see http://www.iriweb.org/Public_Site/Navigation/Events/Virtual_Meetings/audio 
/bb/Change_Embrace_It_Dont_Deny_It.aspx. 
 
 
OVERVIEW: Change midstream in a product development 
project often means cost and budget overruns, schedule delays 
and product defects. Understandably, managers dislike change 
and have installed systems, such as phased development, to 
inhibit it. On the other hand, change—from understanding the 
customer better, from market dynamics and from technology 
advances—is connected inescapably with innovation, which 
management seeks. This article proposes an alternative: build a 
set of tools and approaches to accommodate change without 
undue disruption, thus reintroducing flexibility into product 
development. The flexibility techniques described in this article 
were inspired by the recent reintroduction of flexibility into the 
parallel field of software development by the agile software 
movement. They can be used defensively to deal effectively with 
imposed change or offensively to actually lead change. 
 
KEY CONCEPTS: product development, design changes, prod-
uct innovation, flexible development. 
 
Change from plans during a new-product development 
project is a topic that increasingly places developers and 
their managers in a dilemma. On the one hand, change is 
becoming increasingly commonplace. Customers, who are 
 
 
Preston Smith is a Portland, Oregon-based consultant and 
trainer helping manufacturers to make their development 
processes more responsive. He is co-author with Donald Rein-
ertsen of Developing Products in Half the Time (Wiley, 
1998), and this is his fourth article in Research-Technology 
Management. His latest book, Flexible Product Develop-
ment, was published by JosseyBass in 2007. Smith has been 
an independent management consultant for 20 years and spent 
the preceding 20 years in engineering and management posi-
tions at IBM, Bell Laboratories, General Motors, and smaller 
companies. He holds a Ph.D. in engineering from Stanford 
University. 
preston@NewProductDynamics.com 

presented with more and more options today and can 
turn to the Internet for competitive product information, 
change their minds more frequently and are more insis-
tent on being satisfied. Such changes by customers put 
pressure on development programs to make changes 
accordingly. 
 
In addition, markets shift more often and abruptly as the 
competitive arena becomes more turbulent and complex. 
For example, as globalization “flattens” the Earth, com-
petitors appear from unexpected places, and they often 
bring with them new, disruptive business models. For 
example, Huawei appeared from nowhere in China to 
become a major threat to telecommunications equipment 
giants such as Cisco and Alcatel-Lucent, and Haier likewise 
has given Whirlpool a rough ride (1). Another market shift 
is the one in consumer goods regarding the relative power 
between manufacturers (Procter & Gamble and Rubber-
maid, for example) and retailers (such as Walmart and 
Home Depot) (2). Such market shifts raise the likelihood 
of changes midstream in a development project. 
 
Finally, technology—both the technology that goes into 
the product and the technology (like computer-aided 
design tools) used to develop it—is changing at an accel-
erating pace. New technologies appear and existing ones 
become obsolete or simply passé. Sometimes a new tech-
nology provides unexpected benefits that one would like 
to exploit during a project, such as the enthusiastic recep-
tion of portable music players by runners and others 
exercising physically, which, in turn, demands unex-
pected changes during product development to incorpo-
rate resistance to rain, perspiration and vibration. Alterna-
tively, sometimes the benefits touted by the purveyors of 
the new technology don’t pan out. This opens more 
opportunities for change in the midst of development. 
 
On the other hand, many managers, at all levels, do not 



Page 2 

welcome change during a project. For them, mid-project 
changes open the door to product cost and development 
budget overruns, schedule slippage and product defects. 
Hard-pressed to deliver profit on a quarterly basis, manag-
ers, especially at higher levels, rightly see change as dis-
ruptive. Consequently, management has built develop-
ment systems aimed at predictability and certain success, 
such as: phased development (including Stage-Gate®), Six 
Sigma and Project Office. Although such systems clearly 
have benefits, their gains in predictability come with a 
corresponding side effect of rigidity. 
 
In summary, although change during development is 
increasingly common, I instead see managements adopt-
ing systems that are increasingly resistant to change. This 
article shows how to introduce the flexibility needed to 
make changes during product development with minimal 
disruption, which I believe will separate the future win-
ners from the losers. 
 
Consider this example of turbulence encountered by 
Quadrus, a Calgary-based software development company, 
in developing an application for a Canadian online drug-
store. This is a volatile market driven by ongoing supplier, 
political, regulatory, and legal thrusts. Extreme change 
was the essence of the management challenge Quadrus 
faced. In addition, its client was coming from behind in a 
bid to become a market leader. Quadrus responded by 
using very short (two-day) development iterations—each 
producing working software— and weekly online deploy-
ments, which not only kept up with the changing envi-
ronment but aggressively led the change. By having a 
positive attitude toward change and employing systems 
that could reorient quickly, Quadrus’ client could respond 
to competitive challenges and regulatory demands faster 
than competitors, thus leading the change to gain com-
petitive advantage (3, p. 249). 
 
A Model for Flexibility 
 
In this article, flexibility refers to the ability to make 
changes in the product being developed or in the process 
by which it is developed, even relatively late in develop-
ment, without being too disruptive. Such flexibility is rare 
today because managements have opted for systems that 
actually restrict flexibility in favor of predictability (as 
mentioned earlier), but there is an important exception: 
software development. Over the past several years, soft-
ware developers, such as those at Quadrus, have felt the 
need to accommodate change during development and 
have developed systems that reintroduce flexibility. These 
fall under the label of agile software development, and 
they stem from the Agile Manifesto (AgileManifesto.org). 
Although there are several variations in methodology, all 
agile methods employ some rather revolutionary ap-
proaches: 
 
• They all develop software iteratively in loops of typically 

two weeks but never more than six weeks. 
 
• They all deliver working software at the end of each of 
these iterations (in contrast to the more common deliver-
able of documentation). 
 
• They all reassess and replan the product requirements at 
the end of each iteration. 
 
• They incorporate the customer in this frequent iterative 
planning. 
 
• They depend on small, close-knit teams and will subdi-
vide a large project until they can use such teams. 
 
• Many employ pairing, in which developers write all 
production code using two programmers sitting at one 
computer with one keyboard and mouse, trading off 
between “driver” and “navigator” roles. 
 
• They integrate one product feature at a time into the 
existing package and automate testing so that they can 
test continually as they integrate in order to detect prob-
lems early. 
 
• Furthermore, many write these tests before developing 
the corresponding product feature and then design the 
feature to pass the test. 
 
This is not business as usual in the software development 
world, in which the norm is a sequential (waterfall) proc-
ess with extensive upfront documentation and many 
design reviews (code walkthroughs) to ensure that the 
software works properly when it is finally operational. 
 
Although agile development has grown explosively in the 
software community, it depends on some unique charac-
teristics of the software medium—such as object tech-
nologies and the ability to automate all testing—that are 
not available to the developers of other types of products. 
This does not mean that other fields cannot be agile, but it 
does mean that other developers and managers wishing to 
become more agile will have to rethink the basics of agil-
ity and find other tools and approaches for restoring 
flexibility to non-software development. 
 
This rethinking of agile development is not straightfor-
ward, nor can one simply map the agile development 
characteristics in the bullet list above into flexibility tech-
niques for non-software development projects. It requires 
a rebuilding, for instance, in recognizing that: 
 
• There is value in making the product modular so that 
change can be contained within a module (as is done with 
object technologies in software). 
 
• A key to flexibility is delaying decisions, (as agile soft-
ware developers do by deferring decisions on a product 



Page 3 

feature until the iteration in which the feature is to be 
implemented). 
 
• Small, close-knit teams do best at managing the heavy, 
highly responsive communication needs of a project 
subject to unrelenting change. 
 
• There is great value in building and maintaining options 
to be available in case something changes. 
 
From such recognitions, which have come largely from 
observing how agile software development projects work, I 
have assembled the set of flexible development tools and 
approaches described below for application to non-
software products. Although aimed beyond software, I 
believe these techniques will also help software developers 
to better appreciate the essentials of what they are doing. 
 
Although each of the following tools and approaches 
provides greater flexibility, each also has its costs, mone-
tary or otherwise. Consequently, you should apply these 
tools with an eye toward both benefit and cost. Apply 
them selectively to only the parts of projects where you 
anticipate change or to only projects facing the prospect 
of great change. This assumes that you can, to some ex-
tent, anticipate where change is most likely to occur. 
 
Conversely, if you can plan a project completely and do 
not expect it to change, these tools are unwise. If this is 
your situation, however—because change and innovation 
are inseparable—you might question whether you are 
innovating adequately, which many CEOs put high in 
their priorities (4). 
 
Continually Monitor Customers 
 
As noted, customers (or users) are a major source of 
change. Thus, in order to manage in an environment of 
change, you must find ways of staying abreast of changes 
in the customer’s environment and in his/her perception 
of the product you are developing; it also helps to find 
ways of specifying product requirements that are less 
susceptible to change. 
 
In 20 years of product development consulting, I have 
found that companies that are good at understanding 
their customers find ways unique to their business for 
their developers to keep in regular touch with the cus-
tomer experience. For instance, Black & Decker sends 
design engineers out with customer support technicians as 
they make their rounds to construction sites and home 
centers (5). Toyota has its Japanese engineers cruise 
American freeways, rest stops, shopping malls, and even 
places as unusual as Disneyland to see firsthand how its 
American customers use the product (6), p. 30). Surgical 
instrument manufacturers put their designers into operat-
ing rooms. 
 

This may simply seem like good business practice, but it 
becomes essential for flexible development because it 
gives developers a sense of what is going on in the user 
space so that they can anticipate a change, or at least 
recognize it when it happens. In short, it makes develop-
ers lighter on their feet because “they have been there 
before.” 
 
To anticipate change, you can take this one step further 
than ordinary users by connecting your developers with 
lead users, that is, those who are using your products— 
and maybe even modifying them to suit—in advanced 
ways that the general user might need tomorrow. Eric von 
Hippel describes this technique (7) and cites a project he 
worked on with 3M to find new infection-control prod-
ucts (8). The traditional users here were surgeons working 
in advanced countries, but the lead users he found—who 
were forced to look at infection in dramatically fresh 
ways—were veterinary surgeons, Hollywood makeup 
artists, and surgeons working under challenging condi-
tions in developing countries. 
 
A challenge related to understanding the changing needs 
of customers is specifying product requirements in an 
environment of change. So-called best practice tells us 
that requirements should be specified carefully at a pro-
ject’s outset and “frozen” thereafter, but Don Reinertsen 
has found, by surveying a broad base of developers over 
several years, that this never happens in practice and that 
those who wait for complete specifications will probably 
be beaten to market by those willing to start with incom-
plete ones (3, p. 32). In other words, an environment of 
evolving, changing requirements is far more realistic for 
all products than the imagined one of frozen require-
ments. Furthermore, Alan MacCormack and Barry Boehm, 
from their research on software development projects, 
show us that, even if we could specify the product at the 
outset, this may be unwise, because, in a changing envi-
ronment, the ability to make mid-course changes in re-
quirements in response to customer feedback yields better 
products (3, pp. 34–35). 
 
Accordingly, there are several ways of specifying a product 
at a higher level that is less susceptible to change, such as 
by specifying how the user will relate to it rather than by 
specifying features directly. These higher-level techniques 
include product visions, personas, use cases, and user 
stories (3, pp. 41–47). 
 
Fence-in Change 
 
Developers often suspect that certain parts of the product 
will change more than others. If so, they can divide the 
product into modules to isolate design change. Then, if 
change occurs, its effect on the whole design is limited; 
design changes will not ripple into areas that need not 
change. 
 



Page 4 

The idea of modular design is to create strong barriers 
(interfaces) between modules. In application, this means 
that you are building fences to contain areas subject to 
change. Usually, you should draw the fence as tightly as 
possible around the area of suspected change to minimize 
the surrounding disturbance. 
 
Black & Decker used this technique to manage change in a 
cordless screwdriver project. It proceeded with the highly 
engineered front end (motor, gearbox and chuck), which 
was unlikely to change and kept the handle as a separate 
module because its market research on handle shape was 
inconclusive. The company actually changed direction on 
handle shape six weeks into production (extremely late), 
which was enabled by the carefully chosen modular archi-
tecture (3, pp. 66–67). 
 
However, Toyota (and others) uses this principle effec-
tively in reverse: it fences in the areas it does not want to 
change. For example, the beams in car doors are part of its 
crashworthiness capability, which can be developed only 
with considerable engineering and lots of expensive, time-
consuming testing. Consequently, Toyota fences in stabil-
ity in the door beams as a module but allows designers 
great freedom to change any of the surrounding sheet 
metal as car styles change periodically (6, pp. 43, 245). 
Toyota does the same with the transmission, a complex, 
highly engineered unit whose reliability is critical; inter-
faces around the transmission allow it to remain constant 
while everything connected to it changes (9). 
 
Although modular architectures have great power to 
accommodate change, they also have shortcomings rela-
tive to integral architectures. One negative of modularity 
is cost—interfaces usually add cost to the product. An-
other is a product performance burden—interfaces gener-
ally reduce product performance by adding weight and 
consuming space, or by introducing the possibility of 
weak or leaky joints in mechanical systems or crosstalk or 
phase shift in electrical ones. More fundamentally, inter-
faces introduce constraints on the design that limit de-
signers’ ability to optimize the system completely. Conse-
quently, one should apply modular architectures selec-
tively where they will contribute the most to flexibility 
without incurring undue penalties. 
 
Try Things Out 
 
If you believe the project will not change, you have the 
luxury of planning it completely and simply following 
your plan. To the extent that change might occur, you are 
wise to hedge your bets. Experimentation is an excellent 
tool for this, that is, trying things out intentionally to see 
what might happen. Such experimentation allows you to 
test alternatives, to broaden the design space in case 
change occurs, and to see how robust your design is 
against change. 
 

Experimentation takes many forms. It includes: building 
prototypes, mock-ups and breadboards; testing these; 
running simulations and building models; and overload-
ing a system to see what fails first (a smoke test). The 
savvy experimenter looks for experiments that will return 
as much information and insight as possible for the in-
vestment in money and time. This cost–benefit equation 
has shifted enormously in recent years as computer-aided 
technologies have greatly reduced the cost of experimen-
tation in many fields, such as exploring molecules in 
pharmaceutical development, building physical models of 
mechanical parts for customers to touch, and automating 
the testing of software and hardware. 
 
Such computerized technologies permit experimenting 
prolifically at reasonable cost. Many managers employ 
these computerized tools to cut cost and simply pocket 
the savings, but Orion, a Massachusetts sensor technology 
firm, used computerized prototyping in a hand-held 
surgical laser project to explore seven times more design 
options than it would normally have while keeping its 
prototyping budget to only two-thirds of the previous 
amount (3, pp. 98–100). This gave Orion much more 
flexibility to find a comfortable, easy-to-use design. 
 
Again, experiments cost money and consume time, so 
seasoned experimenters seek areas where change is likely 
and concentrate their experimentation there. Other trade-
offs are involved. One is in deciding whether to run sev-
eral experiments, in parallel (faster) or sequentially (usu-
ally cheaper). There are guidelines for making such 
choices, such as the amount of learning you can apply 
from one generation of experiments to the next and how 
cleanly structured you expect the design space to be (3, 
pp. 102–104). 
 
Explore the Design Space 
 
Experimentation is a good tool for exploring options, but 
we also need a strategy for applying it, that is, for knowing 
which experiments to run. Toyota has an excellent strat-
egy, called set-based design, that amounts to a very differ-
ent way of approaching design. 
 
To illustrate the difference, I contrast the set-based ap-
proach with the more normal point-based one by using a 
non-product-development example attributable to Ward 
et al. (10). Suppose that you wish to convene a meeting. 
The traditional way of doing this (point-based) would be 
for the convener to contact a participant and negotiate a 
mutually acceptable time. Then the convener proceeds to 
the second participant, doing the same and perhaps re-
turning to the first participant to renegotiate. This repeats 
with the other participants. 
 
The set-based approach would be for the convener to 
request all participants’ calendars first. Then the convener 
(today using modern meeting-scheduling software), looks 



Page 5 

for a common open time (the intersection of individuals’ 
available times) and sets a time where everyone is free. 
This not only saves time, but more important, it exposes 
all possible solutions so that, should something change, 
the convener is in a strong position to make adjustments 
easily. 
 
As you can see from this example, set-based design is a 
subtractive process; it employs logical intersections. You 
define the initial feasible space and proceed to impose 
constraints, for instance constraints on the design due to 
manufacturability, cost, weight, or physics. Each con-
straint reduces the feasible design space methodically. You 
thus maintain a space of feasible designs so that you can 
turn to another point in the space if a change renders the 
current design point unsatisfactory. In short, it is a con-
tinual pruning process. 
 
This subtractive process and the design space it maintains 
are quite different from the normal design process that 
proceeds with one (or at most a few discrete) design that 
the designer hones to a final point. With such point-based 
design, if something changes, the designer has no infor-
mation on adjacent designs and must usually retrace 
many steps. The set-based designer can merely shift to 

another place in the current design space. 
 
Build Strong Teams 
 
You have probably read much about strong development 
teams and have made improvements in your teams ac-
cordingly. Nevertheless, there is much we can learn from 
software development about the value of strong teams and 
how we might build them. For a starter, the initial state-
ment of the Agile Manifesto is “Individuals and interac-
tions over processes and tools . . . . That is, while there is 
value in the items on the right, we value the items on the 
left more.” 
 
In building a model to estimate the time and cost 
needed to develop a piece of software, software meth-
odology researcher Barry Boehm identified 22 multi-
pliers on project labor cost and collected data for these 
multipliers over a broad range of development projects 
(11). I have grouped these multipliers into categories in 
the illustration below. Thus, the labor cost multipliers 
associated with the people assigned to the project com-
bine to produce a possible range of 33 to 1 in project 
labor cost, the multipliers associated with the product 
being developed span a range of 10 to 1, and so forth.

 

0 5 10 15 20 25 30 35

People factors

Product factors

Tool and process factors

Schedule constraint factors

Project precedence factors

Design reuse factors

Computer platform factors

Multiplier on development labor cost

0 5 10 15 20 25 30 35

People factors

Product factors

Tool and process factors

Schedule constraint factors

Project precedence factors

Design reuse factors

Computer platform factors

Multiplier on development labor cost
Multipliers on project labor cost span the indicated ranges for each category of project factors. Although the data 
come from a broad variety of software development projects, all but the last category also apply to non-software 
projects. (Computer platform factors relate to specific characteristics of the host computer, which do not have a 
clear analog for non-software products.) From Flexible Product Development by Preston G. Smith, Jossey-B ass. 
© 2007 by John Wiley & Sons. Used with permission. 



Page 6 

This illustration suggests strongly that the factors associ-
ated with people far outweigh the others, so devoting 
effort toward improving how the team works is likely to 
pay far bigger dividends than investments anywhere else. 
This stands in contrast to the great attention and invest-
ment that firms usually devote to processes, methodolo-
gies and tools. 
 
New data from Don Reinertsen, Gary Olson, Judith Olson, 
and the agile software development community show that 
co-location is a powerful factor in improving team per-
formance (3, pp. 142–146). This is disturbing news in an 
era in which globalization and “virtualization” are push-
ing teams away from co-location. However, there is much 
you can do to obtain many of the benefits of co-location 
even if your team is not completely co-located. These 
include co-locating all members in each metropolitan area 
and establishing norms for using tools like e-mail—for 
instance, a rule that any team e-mail must be answered 
within four hours. 
 
Strong teams are vital to flexibility because a turbulent 
environment presents much bigger communication and 
coordination challenges than a stable one, and high-
performance teams are the prime means of coping with 
these challenges. 
 
Make Decisions at the Last Responsible Moment 
 
If you dissect a product development project to see what 
occurs inside, you will find that the core activity is deci-
sion making—thousands of little decisions that cumula-
tively create the product. It follows that you should con-
centrate on this “inner loop” of the process if you wish to 
improve product development. For instance, if you want 
to speed it up, find ways, such as co-location, to accelerate 
decision making, as programmers do when they find the 
inner loop of their code and rewrite it in a low-level lan-
guage that runs faster. 
 
Alternatively, if you wish to be more flexible, find ways to 
make decisions more flexibly. A major opportunity here is 
not to make a decision until you must make it—what we 
call making decisions at the last responsible moment. This 
might seem like procrastination, which is basically being 
lazy about a decision, but it is actually a proactive process 
of identifying when the decision must be made and 
scheduling it, then proceeding to collect information to 
help make a better decision when its last responsible 
moment arrives. 
 
Making decisions at the last responsible moment has two 
advantages. First—most importantly for flexibility—it 
keeps your options open longer, and second, it allows you 
to make the decision using fresher information. 
 
However, there are some decisions, such as ones where the 
outcome is not likely to change or where the outcomes are 

nearly equal, that you should make early so you can 
dismiss them. 
 
Although this delayed decision-making may seem obvi-
ous, it is not the way management normally operates. 
Managers usually are paid to make decisions, not to put 
them off. In contrast, managers at Toyota are paid to delay 
decisions (10). 
 
Note that popular phased development processes tend to 
force organizations into making many decisions unneces-
sarily at the project’s outset in order to “nail things 
down.” Unfortunately, these nailed-down items constitute 
a loss of flexibility. 
 
Plan Piecemeal and Constantly Consider Risk 
 
Project management has become quite popular over the 
past decade. However, the project management profession 
has its roots in the construction industry where predict-
ability is valued highly and major change is relatively 
uncommon. Consequently, you must handle project 
management quite differently when change is the norm. I 
mention just two areas to refocus: 
 
Project planning presents a dilemma for projects undergo-
ing heavy change. The temptation is to replan the project 
in response to change, but this can lead to paying con-
stant attention to replanning rather than to developing 
the product itself. When turbulence is high, you can shift 
to two other means of planning. One is rolling-wave 
planning, in which you plan the next segment in detail 
and leave the rest of the project planned only at the top 
level. As you progress, the wave rolls forward and the next 
segment undergoes detail planning. This way, you are not 
investing much in long-term plans that are likely to 
change anyway. 
 
The other is loose—tight planning in which you alternate 
periods of tight planning and control with more relaxed-
periods in which to regroup. This is what the iterative 
approach of agile software development does by delaying 
planning of features to be implemented until the begin-
ning of an iteration and then planning only those features 
to be implemented in the next iteration. During an itera-
tion, planning is tight, but between iterations all remain-
ing work is reassessed. This is also how Boeing developed 
its 777 airliner by alternating periods of design with peri-
ods of stabilization (12). 
 
Another part of project management you must handle 
differently under heavy change is risk management. Good 
practice under light change is to integrate the risk man-
agement process with the rest of the project management 
process so that risk management actions are identified, 
planned and executed methodically as part of the project 
plan. When change dominates the project, risk manage-
ment instead must be intrinsic, that is, everything you do 



Page 7 

to manage the project is done to manage its risk: you keep 
close to customers to manage the risk of customer change, 
you fence in modules to manage the risk of pervasive 
design modification, and so forth. 
 
Maintain Flexibility in Upper Layers of Process 
 
Although the illustration suggests that the development 
process is not the place to devote improvement effort, 
there is nevertheless much you can do to make your 
development process more flexible. First, recognize that 
because a project has many dimensions, you may find 
that, in one project, you need flexibility in certain areas 
while you will need strict control and accountability in 
certain other areas. For instance, a project may have disas-
trous consequences if the product has defects but its 
essence may be to extend a new technology through 
market adaptation. Consequently, in this project you will 
need tight control over quality while your technology 
experimentation program should be open and extensive 
to provide flexibility. In the next project, these areas of 
control and openness may shift completely. Boehm and 
Turner show how to combine flexibility with tight control 
based on a project’s specific needs (13). 
 
Software developers have learned a useful lesson about 
building flexible development processes: standardize in 
the lower layers of process (13, p. 152). For example, 
standardize how you run a test, how you assess its results, 
and how you apply tolerances to a certain type of compo-
nent. Then maintain flexibility by leaving freedom in the 
upper layers of your process, that is, in how you assemble 
the basic activities. We do this because the upper layers 
provide the flexibility while the lower layers provide the 
quality control. 
 
Consider language as an analogous situation. We do not 
change the letters; there are exactly 26 in English. Words 
are mostly standardized, but new ones do arise or are 
borrowed from other languages: blog, biosphere and ciao. 
There are rules for constructing sentences, but many 
variations are acceptable too. Looser still are paragraphs, 
and almost anything goes in the document layer. 

Observe that most product development processes at-
tempt to specify the upper layers at project outset, for 
instance, by listing which activities must occur in which 
phases, which unnecessarily constrains flexibility. Instead, 
for flexibility, leave many of these upper-layer decisions to 
be decided at the last responsible moment. 
 
Out-Innovate the Competition 
 
Change fits perfectly with innovation, so why make it 
hard to change? Instead, use these tools and approaches as 
well as many others available to you (3) to improve your 
ability to change, to the point that you can out-change 
and thus out-innovate your competitors. 
 
 
References 
1. Zeng, Ming and Williamson, Peter J. 2007. Dragons at Your 
Door, Boston: Harvard Business School Press. 
2. Mitchell, Alan. 2004. Why Retailers’ Power Has Reached the 
Tipping Point. Marketing Week, August 5, pp. 32–33. 
3. Smith, Preston G. 2007. Flexible Product Development. San 
Francisco: Jossey-Bass. 
4. Boston Consulting Group. 2006. Innovation 2006. Boston: 
Boston Consulting Group, Inc. 
5. Smith, Preston G., and Reinertsen, Donald G. 1998. Developing 
Products in Half the Time (Second Edition). New York: Wiley, pp. 
95–96. 
6. Morgan, James M., and Liker, Jeffrey K. 2006. The Toyota 
Product Development System. New York: Productivity Press. 
7. von Hippel, Eric. 1988. The Sources of Innovation. New York: 
Oxford University Press. 
8. von Hippel, Eric, Thomke, Stefan and Sonnack, Mary. 1999. 
Creating Breakthroughs at 3M. Harvard Business Review, Septem-
ber–October, pp. 47–57. 
9. Sobek, II, Durward K., Ward, Allen C. and Liker, Jeffrey K. 
1999. Toyota’s Principles of Set-Based Concurrent Engineering. 
Sloan Management Review, Winter, pp. 67–83. 
10. Ward, Allen, Liker, Jeffrey K., Cristiano, John J., and Sobek, 
Durward K., II. 1995. The Second Toyota Paradox: How Delaying 
Decisions Can Make Better Cars Faster. Sloan Management Review, 
Spring, pp. 43–61. 
11. Boehm, Barry W., et al. 2000. Software Cost Estimation with 
COCOMO II. Upper Saddle River, New Jersey: Prentice Hall. 
12. Thomke, Stefan H. 2003. Experimentation Matters. Boston: 
Harvard Business School Press, pp. 168–169. 
13. Boehm, Barry, and Turner, Richard. 2004. BalancingAgility and 
Discipline. Boston: Addison-Wesley. 

 


