

INTRODUCTION
Provides background information to help you get the most

out of the book

from

Flexible Product Development
by

Preston G. Smith

Copyright © 2007, 2018 by Preston G. Smith. All rights reserved.

xvii

Introduction

This book’s initial chapter, “Understanding Flexibility,” opens the
subject, introduces many key concepts, and sensitizes you to im-
portant points as you read the rest of the book. I therefore sug gest
that you read it first.

Chapters Two through Nine describe the tools, techniques, ap-
proaches, and strategies of flexible development. Think of them as a
kit of tools. Just like the tools you might use to fix your car or repair
the plumbing, you will not use all of the tools in your kit on every job,
and certain ones are inappropriate under certain cir cumstances.
I try to emphasize the limitations and inappropriate uses, but my
advice here is limited, because I cannot envision all the applications
that you may face.

These eight chapters are in largely arbitrary order. I have tried
to keep them independent, and you could read them in any order and
skip ones that do not seem to apply to your operations. Nonethe-
less, there is some order to the chapter arrangement. The chap ter on
customers comes first, because good product development always
starts with the customer. Then I cover the core techniques of prod-
uct architecture, experimentation, and set-based design to expose
you to the meat of the book early.

Next I present a chapter that is also central to high-perfor-
mance product development: development teams. You probably
have already read plenty on teams, so I concentrate on what
supports flexibility in teams. Because co-located teams are so crit-
ical to flexibility, these—and their opposites, globally dispersed
teams—receive special attention. A chapter on decision making

xviii INTRODUCTION

follows the one on teams, because most of the decisions involved are
made within the team and depend on the strong communica tion
channels that result from the practices in the teams chapter.

The next two chapters—on project management and devel-
opment processes—appear at the end of the book for two reasons.
First, flexibility de-emphasizes structured processes and main-
stream project management techniques, such as work breakdown
structures, so these topics, in a certain sense, come last. Second, these
are complex subjects that require an understanding of the nature of
flexibility, which will come from the preceding chapters, so the earli-
er chapters will be helpful prerequisites.
 I follow these eight toolkit chapters with a chapter on imple-
mentation. This is a critical chapter with a sobering objective, for
it asserts that none of the tools and techniques in the other chapters
will be of any use in your business until you implement them. This
often requires significant changes in values, so I provide an effective
approach for making such transitions.
 Finally, this revision provides a chapter on managing anticipat-
ed changes. It presumes that when you are starting a project, you
can already identify one or two changes that you anticipate, so this
chapter provides a technique for managing specific changes that you
are aware of initially. This is a supplement, not a substitute for the
rest of the book, which creates an environment in which any change
can be accommodated without undue disruption.
 One important approach does not have a chapter of its own, be-
cause it is so central to flexible development that it pervades all of
the others: iteration . 1 In contrast with tra ditional methods, which
generally plan activities in advance and execute them sequentially
(with some overlap for speed), flexible approaches typically make
many small loops through the process, obtaining interim feedback
from tests, customers, or management before starting the next loop.
Because flexible developers seldom know precisely where they are
going—due to the uncertainty that is the hallmark of flexibility—
it’s essential to start with small steps in what seems to be the right

direction and make adjustments from there. The tools of flexibili-
ty, covered in Chapters Two through Nine, will help you to iterate
more effectively.

While revising this book, I considered updating the examples.
I decided not to; although some examples are laughably dated (see
Figure 3.1, for instance), they still work well, and the principles they
illustrate are timeless.

 Sources

This may be the first book on product development flexibility, but
I did not invent the material. Rather, I have packaged techniques
from diverse sources. Many of these tools have a rich history and
extensive usage in other areas. Thus, I provide comprehensive end-
notes to indicate the roots or where you can find related material and
a bibliography that supports the endnotes.

Terminology

Why have I chosen to call this flexibility? Agility would do just as well,
but that word is already in use for the same purpose by the software
development community. Because this book must be a rebuilding of
what the agilists have done and not merely a translation, I avoid agile
except in reference to software development.
 More important, what is the opposite of flexibility? Rigidity first
comes to mind, but no one would admit to being rigid. Barry Boehm
and Richard Turner, in an otherwise excellent book, use discipline in
the title and plan-driven inside the book as opposites of agile . Agilists
object to both terms on the basis that agilists have plenty of dis-
cipline, but it is of an unconventional variety. And they probably
plan more than the plan-driven folks, but it is done where it is
unapparent. Structured is another possibility, but it has some of the
same problems. Consequently, I hope to avoid all these booby traps
by using traditional as the opposite of flexible.

TERMINOLOGY xix

